Abstract
Hemorrhagic shock and trauma (HS/T)-induced gut injury may play a critical role in the development of multi-organ failure. Novel therapies that target gut injury and vascular permeability early after HS/T could have substantial impacts on trauma patients. In this study, we investigate the therapeutic potential of human mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC EVs) in vivo in HS/T in mice and in vitro in Caco-2 human intestinal epithelial cells. In vivo, using a mouse model of HS/T, vascular permeability to a 10-kDa dextran dye and histopathologic injury in the small intestine and lungs were measured among mice. Groups were (1) sham, (2) HS/T + lactated Ringer's (LR), (3) HS/T + MSCs, and (4) HS/T + MSC EVs. In vitro, Caco-2 cell monolayer integrity was evaluated by an epithelial cell impedance assay. Caco-2 cells were pretreated with control media, MSC conditioned media (CM), or MSC EVs, then challenged with hydrogen peroxide (H2O2). In vivo, both MSCs and MSC EVs significantly reduced vascular permeability in the small intestine (fluorescence units: sham, 456 ± 88; LR, 1067 ± 295; MSC, 765 ± 258; MSC EV, 715 ± 200) and lung (sham, 297 ± 155; LR, 791 ± 331; MSC, 331 ± 172; MSC EV, 303 ± 88). Histopathologic injury in the small intestine and lung was also attenuated by MSCs and MSC EVs. In vitro, MSC CM but not MSC EVs attenuated the increased permeability among Caco-2 cell monolayers challenged with H2O2. Mesenchymal stem cell EVs recapitulate the effects of MSCs in reducing vascular permeability and injury in the small intestine and lungs in vivo, suggesting MSC EVs may be a potential cell-free therapy targeting multi-organ dysfunction in HS/T. This is the first study to demonstrate that MSC EVs improve both gut and lung injury in an animal model of HS/T.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have