Abstract
In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex.
Highlights
Good et al (1966) selected and reported buffers with less toxicity and less reactivity to biological compounds
In addition to the growth, we observed the effect of MES on root growth behavior, so-called waving phenotype, which is known to reflect a root tropic growth affected by several physical factors such as gravity, light, touch etc. (Okada and Shimura, 1990; Simmons et al, 1995)
We have demonstrated that the effect of MES on Arabidopsis root growth, morphogenesis and tropic behavior
Summary
Good et al (1966) selected and reported buffers with less toxicity and less reactivity to biological compounds. Since these buffers were introduced to enormous amount of laboratory-based experiments. Since eighties of the last century, many studies using plant hydroponic culture have been reporting the availability of MES molecule for buffering pH in liquid culture media. Imsande and Ralston (1981) demonstrated that 1–2 mM of MES solution has an excellent buffering capacity and it shows neither inhibition of nodulation nor lowering of nitrogen fixation in soybean hydroponic culture. Potassium uptake was even enhanced by the MES buffer in non-nodulated seedlings of soybean (Schuttler, 1987)
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have