Abstract

A unique and essential feature of germ cells is their immortality. In Caenorhabditis elegans, germline immortality requires the maternal contribution from four genes, mes-2, mes-3, mes-4 and mes-6. We report here that mes-2 encodes a protein similar to the Drosophila Polycomb group protein, Enhancer of zeste, and in the accompanying paper that mes-6 encodes another Polycomb group protein. The Polycomb group is responsible for maintaining proper patterns of expression of the homeotic and other genes in Drosophila. It is thought that Polycomb group proteins form heteromeric complexes and control gene expression by altering chromatin conformation of target genes. As predicted from its similarity to a Polycomb group protein, MES-2 localizes to nuclei. MES-2 is found in germline nuclei in larval and adult worms and in all nuclei in early embryos. By the end of embryogenesis, MES-2 is detected primarily in the two primordial germ cells. The correct distribution of MES-2 requires the wild-type functions of mes-3 and mes-6. We hypothesize that mes-2 encodes a maternal regulator of gene expression in the early germline; its function is essential for normal early development and viability of germ cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.