Abstract

Following the rejuvenation of 3D organic-inorganic hybrid perovskites, like CH3 NH3 PbI3 , (quasi)-2D Ruddlesden-Popper soft halide perovskites R2 An -1 Pbn X3 n +1 have recently become another focus in the optoelectronic and photovoltaic device community. Although quasi-2D perovskites were first introduced to stabilize optoelectronic/photovoltaic devices against moisture, more interesting properties and device applications, such as solar cells, light-emitting diodes, white-light emitters, lasers, and polaritonic emission, have followed. While delicate engineering design has pushed the performance of various devices forward remarkably, understanding of the fundamental properties, especially the charge-transfer process, electron-phonon interactions, and the growth mechanism in (quasi)-2D halide perovskites, remains limited and even controversial. Here, after reviewing the current understanding and the nexus between optoelectronic/photovoltaic properties of 2D and 3D halide perovskites, the growth mechanisms, charge-transfer processes, vibrational properties, and electron-phonon interactions of soft halide perovskites, mainly in quasi-2D systems, are discussed. It is suggested that single-crystal-based studies are needed to deepen the understanding of the aforementioned fundamental properties, and will eventually contribute to device performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call