Abstract

The genetic factors that control reproductive development in B. oleracea remain a mystery. Broccoli differs from cauliflower in its floral development stage at harvest. We are studying the role of meristem identity genes (MIGs) in the transition from inflorescence meristem (cauliflower) to floral buds (broccoli). The objectives are to determine stage-specific roles of MIGs during reproductive development and to check whether expression of flowering genes in heading B. oleracea is as predicted by the Arabidopsis flowering model. We tested a model of arrest in B. oleracea that incorporates FUL, a redundant gene of AP1 in controlling inflorescence architecture and floral meristem identity, the meristem gene TFL1, the flowering gene LFY, and AP1/CAL, and genes involved in flower transition. Conclusions. 1) Arrest at the inflorescence meristem stage is highly correlated with a decrease in LFY to TFL1 ratio, given by a decrease in TFL1 expression. 2) Transcription of AP1c is stimulated at the time of floral primordium initiation, suggesting a role in floral transition but not in floral organ specification. Plants recessive for AP1a, AP1c, and CAL formed normal floral buds containing all four whorls of organs, and did not necessarily form curd. We suggest that their ability to flower could be related with the ectopic expression of FUL by affecting TFL1 expression. FUL paralogs were highly expressed at all stages of development of the triple mutant plants. 3) The lack of upregulation in AP1 transcripts at the floral bud stage, and the absence of an A-function mutant phenotype imply that other genes act redundantly with AP1 in the specification of sepal identity and questions the role of AP1a and AP1c as A-function genes in B. oleracea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.