Abstract

The Federal Aviation Administration’s NextGen program aims to increase the capacity of the national airspace, while ensuring the safety of aircraft. This paper provides a distributed merging and spacing algorithm that maximizes the throughput at the terminal phase of flight, using information communicated between neighboring aircraft through the ADS-B framework. Aircraft belonging to a mixed fleet negotiate with each other and use dual decomposition to reach an agreement on optimal merging times, with respect to a pairwise cost, while ensuring proper interaircraft spacing for the respective aircraft types. A set of sufficient conditions on the geometry and operating conditions of merging forks is provided to identify when proper interaircraft spacing can always be achieved using the proposed algorithm for any combination of merging aircraft. Also, optimal decentralized controllers are derived for merging air traffic when operating under such conditions. The performance of the presented algorithm is verified through computer simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.