Abstract
Abstract The relationship between active galactic nuclei (AGN) activity and environment has been long discussed, but it is unclear if these relations extend into the dwarf galaxy mass regime—in part due to the limits in both observations and simulations. We aim to investigate if the merger histories and environments are significantly different between AGN and non-AGN dwarf galaxies in cosmological simulations, which may be indicative of the importance of these for AGN activity in dwarf galaxies, and whether these results are in line with observations. Using the IllustrisTNG flagship TNG100-1 run, 6771 dwarf galaxies are found with 3863 (∼57%) having some level of AGN activity. In order to quantify environment, two measures are used: (1) the distance to a galaxy’s 10th nearest neighbor at six redshifts and (2) the time since last merger for three different minimum merger mass ratios. A similar analysis is run on TNG50-1 and Illustris-1 to test for the robustness of the findings. Both measures yield significantly different distributions between AGN and non-AGN galaxies; more non-AGN than AGN galaxies have long term residence in dense environments, while recent (≤4 Gyr) minor mergers are more common for intermediate AGN activity. While no statements are made about the micro or macrophysics from these results, it is nevertheless indicative of a non-negligible role of mergers and environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.