Abstract
In Many/Multi-core processor architectures, hundreds and thousands of Intellectual Property (IP) cores are integrated to reinforce parallel processing and high performance computing. Integration of IP cores is effectively realized by a scalable communication framework, Network on Chip (NoC). NoC comprises of routers and interconnection links which aid transfer of information between IP cores. It is the router which dominants the performance of NoC. A baseline router incorporates the FIFO (First In First Out) buffers, the routing computation logic, the arbiter and the crossbar switch fabric. In this paper, we propose different techniques of merging arbitration and switching functionalities accomplished in wormhole NoC router. Proposed microarchitectures for merging these functionalities are Merged Arbitration and Switching (MAS) microarchitecture based on multiplexer reorganization, Pipelined Merged Arbitration and Switching (PMAS) microarchitecture based on Pipelining and Wave-pipelined Merged Arbitration and Switching (WMAS) microarchitecture based on Wave-pipelining. Synthesis results show that the MAS microarchitecture outperforms the Merged ARbiter and multipleXer (MARX) microarchitecture in area and power consumption by 21.8% and 39.5% respectively. Simulation results show that the PMAS and WMAS microarchitectures outperform MARX microarchitecture in throughput by 40% and 60% respectively at a marginal cost of area and power consumption. Therefore, the benefits of using MAS microarchitecture in wormhole NoC router is low area and power consumption and PMAS or WMAS microarchitecture is high throughput.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.