Abstract

Severe environmental issues are caused by long-term coal mining activities; however, the process of mercury (Hg) response in mining subsidence area sediments (MSAS) is still unclear, and direct evidence showing the relationship between Hg accumulation mechanism in sediments and mining activities is lacking. In this study, the characteristics of total mercury (THg) content in MSAS were investigated. Moreover, Hg isotopes were obtained to determine the main sources and environmental process of mercury in MSAS, and a MixSIAR mixing model was first used to estimate the potential Hg sources. The THg content ranged from 27.5 to 113.9 ng/g, with a mean of 65.8 ± 29.4 ng/g, exceeding the local soil background value (19.7 ng/g). The Hg in MSAS was affected by clay and organic matter. The Δ199Hg and Δ201Hg in the sediments varied from − 0.05–0.05‰ (mean: −0.01 ± 0.03‰) and − 0.07–0.01‰ (mean: −0.02 ± 0.03‰), respectively, with the fitting results suggesting that a photochemical reaction occurred in some of the Hg in the sediments prior to deposition. The results of the MixSIAR mixing model revealed that the Hg in MSAS was mainly derived from gangue, soil erosion, coal, fly ash, and feed, and their corresponding percentage contribution was 51.5 ± 9.6%, 23.8 ± 13.1%, 13.9 ± 7.9%, 8.1 ± 5.4%, and 3.1 ± 1.4%, respectively. Hg isotopes can be used to trace the transport and transformation of environmental pollutants, and this may provide an important reference for the assessment and prevention of Hg pollution in typical areas such as coal mining and coal-fired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.