Abstract
Mercury is utilized worldwide in artisanal and small-scale gold mining (ASGM) and may pose a risk for miners and mining communities. While a number of studies have characterized mercury in ASGM communities, most have focused on a single media and few have taken a holistic approach. Here, a multiple media exposure assessment and cross-sectional study of mercury was conducted in 2010 through 2012 in northeast Ghana with a small-scale gold mining community, Kejetia, a subsistence farming community, Gorogo, and an urban ASGM gold refinery in Bolgatanga. The objective was to assess mercury in a range of human (urine and hair) and ecological (household soil, sediment, fish, and ore) samples to increase understanding of mercury exposure pathways. All participants were interviewed on demographics, occupational and medical histories, and household characteristics. Participants included 90 women of childbearing age and 97 adults from Kejetia and 75 adults from Gorogo. Median total specific gravity-adjusted urinary, hair, and household soil mercury were significantly higher in Kejetia miners (5.18 µg/L, 0.967 µg/g, and 3.77 µg/g, respectively) than Kejetia non-miners (1.18 µg/L, 0.419 µg/g, and 2.00 µg/g, respectively) and Gorogo participants (0.154 µg/L, 0.181 µg/g, and 0.039 µg/g) in 2011. Sediment, fish, and ore Hg concentrations were below guideline values. Median soil mercury from the Bolgatanga refinery was very high (54.6 µg/g). Estimated mean mercury ingestion for Kejetia adults from soil and dust exceeded the U.S. Environmental Protection Agency reference dose (0.3 µg Hg/kg·day) for pica (0.409 µg Hg/kg·day) and geophagy (20.5 µg Hg/kg·day) scenarios. Most participants with elevated urinary and household soil mercury were miners, but some non-miners approached and exceeded guideline values, suggesting a health risk for non-mining residents living within these communities.
Highlights
Artisanal and small-scale gold mining (ASGM) has recently been identified as the largest contributor to global anthropogenic mercury (Hg) in the atmosphere [1]
This study increases our understanding of Hg exposures among miners and non-miners living in an ASGM community to better explain the distribution of Hg contamination in these types of communities
As observed in other ASGM communities, Hg exposures are elevated in Kejetia for miners and non-miners
Summary
Artisanal and small-scale gold mining (ASGM) has recently been identified as the largest contributor to global anthropogenic mercury (Hg) in the atmosphere [1]. A neurotoxicant, is used to isolate gold ore in the ASGM process [5]. There are two forms of Hg: organic and inorganic, which can be elemental (Hg) or inorganic salts (e.g., HgS, HgCl2, Hg+, Hg+2). ASGM utilizes elemental Hg, which poses a risk for human health and environmental contamination as Hg is a potent neurotoxicant [6,7]. Gold deposits are ubiquitous in Ghana and have resulted in ASGM and large-scale gold mining across the country, making Ghana the ninth largest gold-producing country in the world [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.