Abstract
Soil properties largely control the fate of mercury (Hg), including the synthesis of neurovirulent methylmercury (MeHg). Here, the freshwater snail (Cipangopaludina cahayensis), a snail species commonly bred in flooded farmland, was used in a test of biotoxicity exposure to explore the effects of soil components on Hg bioavailability. The results show that snails incubated on the surface of slightly Hg-polluted flooded soil (2.0mg/kg) have MeHg concentrations of 7.9 ± 1.5mg/kg, which greatly exceed the limit of contaminants in food in China (0.5mg/kg). The addition of ferrous disulfide can significantly increase the MeHg concentrations in soils while reducing the concentrations of total Hg (THg) and MeHg levels in snails by 59.1% and 64.3%, respectively. Peat-derived fulvic acid has the capacity to reduce the MeHg concentrations in soils and snails by 23.8% and 33.2%, respectively, whereas it increases the dissolved Hg levels in overlying water by 104.3%. Moreover, Fe-Mn oxides and humic acid can consistently reduce THg and MeHg concentrations in snails. Overall, freshwater snails bred in Hg-polluted areas may suffer from a high risk of Hg exposure, and importantly, some soil components such as ferrous disulfide and humic acid have strong inhibitory effects on Hg bioaccumulation in snails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of environmental contamination and toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.