Abstract

Methylmercury (MeHg) is the most neurotoxic and bioaccumulative form of mercury (Hg) present in the terrestrial and aquatic food sources of boreal ecosystems, posing potential risks to wildlife and human health. Harvesting impacts on Hg methylation and MeHg concentrations in forest soils and stream sediment are not fully understood. In this study, a field investigation was carried out in 4 harvested and 2 unharvested boreal forest watersheds, before and after harvest, to better understand impacts on Hg methylation and MeHg concentration in soils and stream sediment, including their responses to different forest management practices. Changes in total Hg (THg) and MeHg concentrations, first-order potential rate constants for Hg methylation and MeHg demethylation (Kmeth and Kdemeth) as well as total carbon content and carbon-to-nitrogen ratio post-harvest in upland, wetland and riparian soils and stream sediment were assessed and compared. Increases in MeHg production were minimal in upland, wetland or riparian soils after harvest. Sediment in streams with minor buffer protection (∼3 m), greater fractions (>75%) of harvested watershed area and more road construction had significantly increased THg and MeHg concentrations, %-MeHg, Kmeth and total carbon content post-harvest. From these patterns, we infer that inputs of carbon and inorganic Hg into harvest-impacted stream sediment are likely sourced from the harvested upland areas and stimulate in situ MeHg production in stream sediment. These findings indicate the importance of stream sediment as potential MeHg pools in harvested forest watersheds. The findings also demonstrate that forest management practices aiming to mitigate organic matter and Hg inputs to streams can effectively alleviate harvesting impacts on Hg methylation and MeHg concentrations in stream sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.