Abstract

Mercury (Hg) has been used for millennia in artisanal and small-scale gold mining (ASGM) to extract gold from ore as an amalgam that is heated to recover gold. Since there is hardly any sustainable technology that can be used to recover it, the vast percentage of released Hg finds its way into the environment. Currently, ASGM is the largest source of mercury pollution on Earth. Mercury (Hg) is listed among the top 10 most harmful metals by the World Health Organization (WHO), and it is known to cause several neurological disorders in humans. Thus, Hg levels in environmental systems surrounding pollution hotspots such as ASGM mines need to be monitored to ensure their proper management and protect vulnerable ecosystems and human health. This work was aimed to study the level of Hg pollution in soils and plants thriving around ASGM mines in Eastern Uganda and to evaluate the Hg phytoremediation potential of the plants. The total Hg contents were determined for soils, food crops and wild plants growing around ASGM mines. The results for the pH, organic carbon (OC) and electric conductivity (EC) of the soils in the study area were comparable to those of the control soils. The soils in the studied ASGM areas exhibited high Hg concentrations ranging between 723 and 2067 folds more than those of the control soils. All soils were moderately to heavily contaminated according to geoaccumulation (Igeo) index values that ranged between 1.16 and 3.31. The results of this study also showed that the food crops and wild plants accumulated Hg levels that were above the 20 ng/g (0.02 ppm) permissible limit. This study revealed relatively higher levels of Hg in the aerial parts of the plants compared with the underground organs, which can be attributed to Hg deposition, entry through stomata and foliar adsorption. Mercury levels in 47% of the food crop samples were above the FAO/WHO permissible mercury limit of 0.5 µg/g. Similarly, medicinal plants accumulated Hg to levels that were several folds higher than the 0.2 ppm permissible limit of mercury in herbal materials of Canada. Interestingly, this study showed that some wild plant species, especially sedges, exhibited relatively higher levels of mercury accumulation than others thriving in the same environment, an indication that such plants could be utilized in the phytoremediation of Hg-contaminated sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call