Abstract
This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and nonintrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated variance (IVAR) design criterion for GP regression. Our formulation treats design as a continuous optimization problem that can be solved with gradient-based methods on complex input domains without resorting to greedy approximations. We show that minimizing IVAR in this way yields point sets with good interpolation properties and that it enables more accurate GP regression than designs based on entropy minimization or mutual information maximization. Second, using a Mercer kernel/eigenfunction perspective on GP regression, we identify conditions under which GP regression coincides with pseudospectral polynomial approximation. ...
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have