Abstract

Nitric oxide (NO) produced by the inducible nitric-oxide synthase (iNOS) is responsible for some of the pathophysiological alterations during inflammation. Part of NO-related cytotoxicity is mediated by peroxynitrite, an oxidant species produced from NO and superoxide. Aminoguanidine and mercaptoethylguanidine (MEG) are inhibitors of iNOS and have anti-inflammatory properties. Here we demonstrate that MEG and related compounds are scavengers of peroxynitrite. MEG caused a dose-dependent inhibition of the peroxynitrite-induced oxidation of cytochrome c2+, hydroxylation of benzoate, and nitration of 4-hydroxyphenylacetic acid. MEG reacts with peroxynitrite with a second-order rate constant of 1900 +/- 64 M-1 s-1 at 37 degrees C. In cultured macrophages, MEG reduced the suppression of mitochondrial respiration and DNA single strand breakage in response to peroxynitrite. MEG also reduced the degree of vascular hyporeactivity in rat thoracic aortic rings exposed to peroxynitrite. The free thiol plays an important role in the scavenging effect of MEG. Aminoguanidine neither affected the oxidation of cytochrome c2+ nor reacted with ground state peroxynitrite, but inhibited the peroxynitrite-induced benzoate hydroxylation and 4-hydroxyphenylacetic acid nitration, indicating that it reacts with activated peroxynitrous acid or nitrogen dioxide. Compounds that act both as iNOS inhibitors and peroxynitrite scavengers may be useful anti-inflammatory agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.