Abstract

Meningococcal meningitis is a climate sensitive infectious disease. The regional extent of the Meningitis Belt in Africa, where the majority of epidemics occur, was originally defined by Lapeysonnie in the 1960s. A combination of climatic and environmental conditions and biological and social factors have been associated to the spatial and temporal patterns of epidemics observed since the disease first emerged in West Africa over a century ago. However, there is still a lack of knowledge and data that would allow disentangling the relative effects of the diverse risk factors upon epidemics. The Meningitis Environmental Risk Information Technologies Initiative (MERIT), a collaborative research-to-practice consortium, seeks to inform national and regional prevention and control strategies across the African Meningitis Belt through the provision of new data and tools that better determine risk factors. In particular MERIT seeks to consolidate a body of knowledge that provides evidence of the contribution of climatic and environmental factors to seasonal and year-to-year variations in meningococcal meningitis incidence at both district and national scales. Here we review recent research and practice seeking to provide useful information for the epidemic response strategy of National Ministries of Health in the Meningitis Belt of Africa. In particular the research and derived tools described in this paper have focused at “getting science into policy and practice” by engaging with practitioner communities under the umbrella of MERIT to ensure the relevance of their work to operational decision-making. We limit our focus to that of reactive vaccination for meningococcal meningitis. Important but external to our discussion is the development and implementation of the new conjugate vaccine, which specifically targets meningococcus A.

Highlights

  • Meningococcal meningitis is an infection of the thin lining that surrounds the brain and spinal cord

  • In order to disentangle the relationship between climate variables and meningitis incidence induced through a common seasonal and/or linear trend from a potential causal relationship, the climate variables included in the models were in the form of residuals obtained by subtracting both a linear trend plus a harmonic trend of order 3 from each of the climate variables under consideration

  • Establishing Early Warning Systems (EWSs) for climate related disasters is a particular focus of the ‘Global Framework for Climate Services’ (Hewitt et al 2012) and communities concerned with disaster risk reduction and climate change adaptation (Thomson 2013)

Read more

Summary

Introduction

Meningococcal meningitis is an infection of the thin lining that surrounds the brain and spinal cord. Despite the rapid implementation of a new conjugate vaccine (which targets serogroup A only), a recent review indicated that there is still a need for further work to identify the host, organism and environmental factors that contribute to the geographic location, seasonality and inter-annual variability of meningococcal disease and to predict and control epidemics in Africa (Greenwood 2013).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.