Abstract

Graphene is a two dimensional honeycomb structure of sp hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene’s electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call