Abstract

Mammalian-mimicking functional electrical devices have tremendous potential in robotics, wearable and health monitoring systems, and human interfaces. The keys to achieve these devices are (1) highly sensitive sensors, (2) economically fabricated macroscale devices on flexible substrates, and (3) multifunctions beyond mammalian functions. Although highly sensitive artificial electronic devices have been reported, none have been fabricated using cost-effective macroscale printing methods and demonstrate multifunctionalities of artificial electronics. Herein we report fully printed high-sensitivity multifunctional artificial electronic whiskers (e-whisker) integrated with strain and temperature sensors using printable nanocomposite inks. Importantly, changing the composition ratio tunes the sensitivity of strain. Additionally, the printed temperature sensor array can be incorporated with the strain sensor array beyond mammalian whisker functionalities. The sensitivity for the strain sensor is impressively high (∼59%/Pa), which is the best sensitivity reported to date (>7× improvement). As the proof-of-concept for a truly printable multifunctional artificial e-whisker array, two- and three-dimensional space and temperature distribution mapping are demonstrated. This fully printable flexible sensor array should be applicable to a wide range of low-cost macroscale electrical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call