Abstract

A MEMS based novel THz detector structure is designed and realized by micro fabrication. The detector is then characterized to extract its mechanical performance. Operating in 1-5 THz band, the detector has a pixel size of 200μm × 200μm. Bimaterial suspension legs consist of Parylene-C and titanium, the pair of which provides a high mismatch in coefficients of thermal expansion. The pixel is a suspended Parylene-C structure having a 200 nm-thick titanium metallization. Operation principle relies on conversion of absorbed THz radiation into heat energy on the pixel. This increases the temperature of the free-standing microstructure that is thermally isolated from the substrate. The increase in temperature induces mechanical deflection due to bimaterial springs. The detector is designed to deliver a noise equivalent temperature difference (NETD) less than 500 mK and a refresh rate of 30Hz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.