Abstract

Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a five-dimension (5D) double-memristor hyperchaotic system (DMHS) is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula. The boundness condition of the proposed hyperchaotic system is proved. Coexisting bifurcation diagram and numerical verification explain the bistability. The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin. The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS. The NIST tests show that the generated signal sequence is highly random, which is feasible for encryption purposes. Furthermore, the system is implemented based on a FPGA experimental platform, which benefits the further applications of the proposed hyperchaos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call