Abstract

The first MEMOS 3D simulations of liquid metal motion on an inclined bulk tungsten sample transiently molten by edge-localized modes (ELMs) are reported. The exposures took place at the outer ASDEX-Upgrade divertor with the tungsten surface tangent intersecting the magnetic field at ∼ 18°. Simulations confirm that the observed poloidal melt motion is caused by the volumetric J × B force with J the bulk replacement current triggered by thermionic emission. The final erosion profile and total melt build up are reproduced by employing the escaping thermionic current dependence on the incident heat flux derived from dedicated particle-in-cell simulations. Modelling reveals that melt dynamics is governed by the volumetric Lorentz force, capillary flows due to thermal surface tension gradients and viscous deceleration. The effect of the evolving surface deformation, that locally alters the field-line inclination modifying the absorbed power flux and the escaping thermionic current, in the final surface morphology is demonstrated to be significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.