Abstract

Memory architectures have been widely adopted in network intrusion detection system for inspecting malicious packets due to their flexibility and scalability. Memory architectures match input streams against thousands of attack patterns by traversing the corresponding state transition table stored in commodity memories. With the increasing number of attack patterns, reducing memory requirement has become critical for memory architectures. In this paper, we propose a novel memory architecture using perfect hashing to condense state transition tables without hash collisions. The proposed memory architecture achieves up to 99.5% improvement in memory reduction compared to the traditional two-dimensional memory architecture. We have implemented our memory architectures on graphic processing units and tested using attack patterns from Snort V2.8 and input packets form DEFCON. The experimental results show that the proposed memory architectures outperform state-of-the-art memory architectures both on performance and memory efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.