Abstract

This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore, a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.