Abstract

This paper addresses memory requirement issues arising in implementations of algorithms on graphs of bounded treewidth. Such dynamic programming algorithms require a large data table for each vertex of a tree-decomposition T of the input graph. We give a linear-time algorithm that finds the traversal order of T minimizing the number of tables stored simultaneously. We show that this minimum value is lower-bounded by the pathwidth of T plus one, and upper bounded by twice the pathwidth of T plus one. We also give a linear-time algorithm finding the depth-first traversal order minimizing the sum of the sizes of tables stored simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.