Abstract

Adaptive response to varying environment is a common feature of biological organisms. Reproducing such features in electronic systems and circuits is of great importance for a variety of applications. We consider memory models inspired by an intriguing ability of slime molds to both memorize the period of temperature and humidity variations and anticipate the next variations to come, when appropriately trained. Effective circuit models of such behavior are designed using: 1) a set of LC contours with memristive damping and 2) a single memcapacitive system-based adaptive contour with memristive damping. We consider these two approaches in detail by comparing their results and predictions. Finally, possible biological experiments that would discriminate between the models are discussed. In this paper, we also introduce an effective description of certain memory circuit elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.