Abstract

The study of membrane proteins as prime drug targets has led to intensified efforts to characterize their structure and function. With regards to the structural analysis of membrane proteins, there have been considerable technological innovations in cryo-EM and X-ray crystallography, but advancements in the elucidation of membrane protein function, especially on a single-molecule level, have been struggling to bridge from basic science to high-throughput applications. There is a need for advanced biosensor platforms allowing membrane protein-mediated transport and potential suppressor libraries to be characterized. Membrane proteins facilitating the translocation of non-electrogenic substrates particularly suffer from a lack of such techniques to date. Here, we summarize recent developments in the field of membrane protein analysis, with a special focus on micro- and nanostructured platforms for purpose of high-throughput screening using fluorescent read-out systems. Additionally, their use as novel biosensor platforms to elucidate non-electrogenic substrate translocation is described. This overview contains 82 references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call