Abstract

Membrane-assisted solvent extraction coupled to large volume injection in a programmable temperature vaporisation injector using gas chromatography–mass spectrometry analysis was optimised for the simultaneous determination of a variety of endocrine disrupting compounds in environmental water samples (estuarine, river and wastewater). Among the analytes studied, certain hormones, alkylphenols and bisphenol A were included. The nature of membranes, extraction solvent, extraction temperature, solvent volume, extraction time, ionic strength and methanol addition were evaluated during the optimisation of the extraction. Matrix effects during the extraction step were studied in different environmental water samples: estuarine water, river water and wastewater (influent and effluent). Strong matrix effects were observed for most of the compounds in influent and effluent samples. Different approaches were studied in order to correct or minimise matrix effects, which included the use of deuterated analogues, matrix-matched calibration, standard addition calibration, dilution of the sample and clean-up of the extract using solid-phase extraction (SPE). The use of deuterated analogues corrected satisfactorily matrix effect for estuarine and effluent samples for most of the compounds. However, in the case of influent samples, standard addition calibration and dilution of the sample were the best approaches. The SPE clean-up provided similar recoveries to those obtained after correction with the corresponding deuterated analogue but better chromatographic signal was obtained in the case of effluent samples. Method detection limits in the 5-54 ng L(-1) range and precision, calculated as relative standard deviation, in the 2-25% range were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call