Abstract

Matrix metalloprotease-2 is implicated in many biological processes and degrades extracellular and non-extracellular matrix molecules. Matrix metalloprotease-2 maintains a latent state through a cysteine-zinc ion pairing which, when disrupted, results in full enzyme activation. This pairing can be disrupted by a conformational change or cleavage within the propeptide. The best known activation mechanism for pro-matrix metalloprotease-2 occurs via cleavage of the propeptide by membrane type-1 matrix metalloprotease. However, significant residual activation of pro-matrix metalloprotease-2 is seen in membrane type-1 matrix metalloprotease knockout mice and in fibroblasts treated with metalloprotease inhibitors. These findings indicate the presence of a membrane type-1 matrix metalloprotease-independent activation mechanism for pro-matrix metalloprotease-2 in vivo, which prompted us to explore an alternative activation mechanism for pro-matrix metalloprotese-2. In this study, we demonstrate membrane type-1 matrix metalloprotease-independent propeptide processing of matrix metalloprotease-2 in HEK293F and various tumor cell lines, and show that proprotein convertases can mediate the processing intracellularly as well as extracellularly. Furthermore, processed matrix metalloprotease-2 exhibits enzymatic activity that is enhanced by intermolecular autolytic cleavage. Thus, our experimental data, taken together with the broad expression of proprotein convertases, suggest that the proprotein convertase-mediated processing may be a general activation mechanism for pro-matrix metalloprotease-2 in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call