Abstract

Parallel-fibre synaptic membranes were examined by freeze-fracture and ethanolic-phosphotungstic acid methods in the cerebellum of homozygous (j/j) Gunn rats with hereditary jaundice. Parallel-fibre synapses with dendritic spines of Purkinje cell were severely affected since many Purkinje cells degenerated during the early postnatal period. Some parallel-fibre synaptic terminals lacked their postsynaptic partners and faced astrocytic processes from 18 days of age to the adult stage. These parallel-fibre terminals contained clusters of synaptic vesicles adjacent to synaptic membranes, and synaptic membranes and synaptic cleft materials were identical to those of parallel fibres with postsynaptic partners, as visualized by conventional electron microscopy with osmium tetroxide postfixation and staining of sections with uranyl acetate and lead citrate. In freeze-fractured specimens, the presynaptic membrane of parallel fibres had diffusely distributed large particles and tiny pits on the P-face and protuberances on the E-face, together representing synaptic vesicle attachment sites. Such vesicle attachment sites were present on the presynaptic membranes of parallel fibres without postsynaptic partners from day 18 to the adult stage. After ethanolic-phosphotungstic acid staining, parallel-fibre terminals displayed presynaptic dense projections, intercleft materials and postsynaptic thickening, but some parallel fibres lacked postsynaptic thickening. These observations suggest that the presynaptic membrane structure of the parallel fibre is preserved, even in the absence of a postsynaptic partner, in j/j cerebella. A mechanism for persistence of presynaptic membrane structures without postsynaptic partners in j/j cerebella is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.