Abstract
The importance of the immediately releasable pool (IRP) of vesicles was proposed to reside in the maintenance of chromaffin cell secretion during the firing of action potentials at basal physiological frequencies. To accomplish this duty, IRP should be replenished as a function of time. We have previously reported that an action potential-like stimulus (APls) triggers the release of ~50% IRP, followed by a fast dynamin-dependent endocytosis and an associated rapid replenishment process. In this work, we investigated the endocytosis and IRP replenishment produced after the exocytosis of variable IRP fractions in mice primary chromaffin cell cultures. Exocytosis and endocytosis were estimated by membrane capacitance measurements obtained in patch-clamped cells. In addition to the dynamin-dependent fast endocytosis activated after the application of APls or 5ms squared depolarizations, we found that depolarizations lasting 25-50 ms, which release >80% of IRP, are related with a fast dynamin-independent, Ca2+ - and protein kinase C (PKC)-dependent endocytosis (time constant <1s). PKC inhibitors, such as staurosporine, bisindolylmaleimide XI, PKC 19-31 peptide, and prolonged treatments with high concentrations of phorbol esters, reduced and decelerated this endocytosis. Additionally, we found that the inhibition of PKC also abolished a slow component of replenishment (time constant ~8s) observed after total IRP exocytosis. Therefore, our results suggest that PKC contributes to the coordination of membrane retrieval and vesicle replenishment mechanisms that occur after the complete exocytosis of IRP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have