Abstract

α-Synuclein (α-Syn), an intrinsically disordered protein, is associated with Parkinson's disease. Though molecular pathogenic mechanisms are ill-defined, mounting evidence connects its amyloid forming and membrane binding propensities to disease etiology. Contrary to recent data suggesting that membrane remodeling by α-syn involves anionic phospholipids and helical structure, we discovered that the protein deforms vesicles with no net surface charge (phosphatidylcholine, PC) into tubules (average diameter ∼20 nm). No discernible secondary structural changes were detected by circular dichroism spectroscopy upon the addition of vesicles. Notably, membrane remodeling inhibits α-syn amyloid formation affecting both lag and growth phases. Using five single tryptophan variants and time-resolved fluorescence anisotropy measurements, we determined that α-syn influences bilayer structure with surprisingly weak interaction and no site specificity (partition constant, Kp ∼ 300 M(-1)). Vesicle deformation by α-syn under a variety of different lipid/protein conditions is characterized via transmission electron microscopy. As cellular membranes are enriched in PC lipids, these results support possible biological consequences for α-syn induced membrane remodeling related to both function and pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.