Abstract

"Membrane regulation" of stress responses in various systems is widely studied. In poikilotherms, membrane rigidification could be the first reaction to cold perception: reducing membrane fluidity of membranes at physiological temperatures is coupled with enhanced cold inducibility of a number of genes, including desaturases (see J.L. Harwood's article in this Proceedings volume). A similar role of changes in membrane physical state in heat (oxidative stress, etc.) sensing- and signaling gained support recently from prokaryotes to mammalian cells. Stress-induced remodeling of membrane lipids could influence generation, transduction, and deactivation of stress signals, either through global effects on the fluidity of the membrane matrix, or by specific interactions of boundary (or raft) lipids with receptor proteins, lipases, ion channels, etc. Our data point to membranes not only as targets of stress, but also as sensors in activating a stress response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.