Abstract

The effects of combined cold, acid and ethanol on the membrane physical state and on the survival of Oenococcus oeni were investigated. Membrane fluidity was monitored on intact whole O. oeni cells subjected to single and combined cold, acid and ethanol shocks by using fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Results showed that cold shocks (14 and 8 °C) strongly rigidified plasma membrane but did not affect cell survival. In contrast, ethanol shocks (10–14% v/v) induced instantaneous membrane fluidisation followed by rigidification and resulted in low viability. Acid shocks (pH 4.0 and pH 3.0) exerted a rigidifying effect on membrane without affecting cell viability. Whatever the shock orders, combined cold (14 °C) and ethanol (14% v/v) shocks resulted in strong membrane rigidification. Interestingly, O. oeni survived combined cold and ethanol shocks more efficiently than single ethanol shock. Membrane rigidification was induced by ethanol-and-acid (10% v/v - pH 3.5) shock and correlated with total cell death. In contrast, O. oeni recovered its viability when subjected to cold (8 °C)-then-ethanol-and-acid shock which strongly rigidified the membrane. Our results suggested a positive short-term effect of combined cold, acid and ethanol shocks on membrane fluidity and viability of O. oeni.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call