Abstract

A potential-sensitive dye was recently used to measure the spatial variation in the membrane potential induced by an externally applied electric field. In this work, we demonstrate that the time course of these induced potentials can also be followed. Two experimental systems were explored. Dye fluorescence from HeLa cells could be modulated by a train of field pulses; the relative fluorescence change measured with a lock-in amplifier was linear with the field and similar to the fluorescence responses obtained in the static measurements. A model membrane system consisting of a hemispherical bilayer allowed convenient measurement of the dye absorbance change as a function of the bathing solution conductivity. The charging time of the membrane was inversely related to the aqueous conductance as predicted by the theoretical solution to Laplace's equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.