Abstract

The charging of the plasmalemma is a necessary condition for permeabilization of the plasma membrane (electroporation) in response to external electric field exposure. Common theories explain this permeabilization by formation of pores in the lipid bilayer. Using pulsed laser fluorescence microscopy, we measured the charging process of the membrane during the application of an external electric field with a temporal resolution of 5 ns. Visualization of the charging process of protoplasts plasma membrane (Nicotiana tabacum Bright Yellow 2) was achieved by staining of the plasma membrane with the voltage-sensitive fluorescent dye ANNINE-6. Measurements on membranes exhibiting negligible membrane permeabilization confirm the sine-shaped azimuthal distribution of the membrane voltage predicted by the relation of Cole. At higher membrane voltages, enhanced pore formation allows for the exchange of charge carriers, leading to deviations from the sine-shaped curve progression, i.e., a saturation of the membrane voltage at membrane segments facing the electrodes. Additionally, measurements on protoplasts exposed to multiple successive pulses indicate that the recovery of the membrane seems to be a fast process, occurring within seconds after termination of the external electric field pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.