Abstract
The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the ZERO splice variant, which is also activated by cAMP. These channels explain the hyperpolarization, which has been observed after stimulation of renin release with cAMP. In addition, there is now evidence that JG cells express functional L-type voltage-dependent calcium channels (Ca(v) 1.2), which in situations with strong depolarization lead to calcium influx and inhibition of renin release. In most in vivo situations the membrane potential is probably protected against depolarization by the BK(Ca) channels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have