Abstract
Endophilin is an N-BAR protein, which is characterized by a crescent-shaped BAR domain and an amphipathic helix that contributes to the membrane binding of these proteins. The exact function of that H0 helix has been a topic of debate. In mammals, there are five different endophilin isoforms, grouped into A (three members) and B (two members) subclasses, which have been described to differ in their subcellular localization and function. We asked to what extent molecular properties of the H0 helices of these members affect their membrane targeting behavior.We found that all H0 helices of the endophilin isoforms display a two-state equilibrium between disordered and α-helical states in which the helical secondary structure can be stabilized through trifluoroethanol. The helicities in high TFE were strikingly different among the H0 peptides. We investigated H0-membrane partitioning by the monitoring of secondary structure changes via CD spectroscopy. We found that the presence of anionic phospholipids is critical for all H0 helices partitioning into membranes. Membrane partitioning is found to be sensitive to variations in membrane complexity. Overall, the H0 B subfamily displays stronger membrane partitioning than the H0 A subfamily. The H0 A peptide-membrane binding occurs predominantly through electrostatic interactions. Variation among the H0 A subfamily may be attributed to slight alterations in the amino acid sequence. Meanwhile, the H0 B subfamily displays greater specificity for certain membrane compositions, and this may link H0 B peptide binding to endophilin B's cellular function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have