Abstract
Intrauterine infection is a significant cause of neonatal morbidity and mortality. Ureaplasma parvum is a microorganism commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms of early stage ascending reproductive tract infection remain poorly understood. To examine inflammation in fetal (chorioamnionic) membranes we utilized a non-human primate (NHP) model of choriodecidual U. parvum infection. Eight chronically catheterized pregnant rhesus macaques underwent maternal-fetal catheterization surgery at ~105-112 days gestation and choriodecidual inoculation with U. parvum (105 CFU/mL, n =4) or sterile media (controls; n = 4) starting at 115-119 days, repeated at 5-day intervals until C-section at 136-140 days (term=167 days). The average inoculation to delivery interval was 21 days, and Ureaplasma infection of the amniotic fluid (AF) was undetectable in all animals. Choriodecidual Ureaplasma infection resulted in increased fetal membrane expression of MMP-9 and PTGS2, but did not result in preterm labor or increased concentrations of AF pro-inflammatory cytokines. However, membrane expression of inflammasome sensors, NLRP3, NLRC4, AIM2, and NOD2, and adaptor ASC (PYCARD) gene expression were significantly increased. Gene expression of IL-1β, IL-18, IL-18R1 , CASPASE-1, and pro-CASPASE-1 protein increased with Ureaplasma infection. Downstream inflammatory genes MYD88 and NFκB (Nuclear factor kappa-light-chain-enhancer of activated B cells) were also significantly upregulated. These results demonstrate that choriodecidualUreaplasma infection, can cause activation of inflammasome complexes and pathways associated with pPROM and preterm labor prior to microbes being detectable in the AF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have