Abstract
Membrane degassing technology may prove to be a viable alternative to current coal bed methane recovery. The proposed approach involves supplying a CO2 sweep gas to membrane fibres placed directly within a saturated coal seam to provide simultaneous CO2 sequestration and CH4 recovery. A system of ordinary differential equations derived from a mass balance on an infinitesimal fibre element enabled the calculation of lumen gas composition as a function of fibre length. The results were verified through the use of a bench‐scale vessel. The model agreement appears reasonable for CH4 recovery; however, agreement for CO2 recovery declines as liquid flow decreases and lumen flow increases. To further evaluate the feasibility of the membrane degassing technology, model predictions were normalized to an average conventional CH4 recovery rate of 1.56 × 104 m3 d−1. Assuming a hypothetical coal seam with a groundwater velocity of 100 cm d−1 ,, thickness of 36.6 m and an average depth of 107 m, 290,000 m2 or 7.73 km of fibre fabric is required, resulting in 4.11 × 105 m3 of CO2 transfer daily and an outlet gas composition of 95% CH4, 4.4% CO2 and 0.6% H2O vapour. Increasing groundwater velocities reduce the required membrane surface area with diminishing effect, stabilizing at 100 cm d−1. Greater pore pressures also reduce required membrane areas, and predictions indicate that a deeper coal seam under 4.3 times greater pressure would require 98% fewer fibres as compared with the hypothetical coal seam and only 0.206 km of membrane fabric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.