Abstract

Volatile fatty acids (VFAs) serve as building blocks for a wide range of chemicals, but it is difficult to extract VFAs from pH-neutral wastewater using evaporation methods because of the ionized form. This study presents a new membrane electrolysis distillation (MED) process that extracts VFAs from such fermentation solutions. MED uniquely integrates pH regulation and joule heating to facilitate the efficient evaporation of VFAs. This integration occurs alongside a hydrophobic membrane that ensures effective gas-liquid phase separation. Operating solely on electricity, MED achieved an acid flux rate of 12.03 g/m2/h at 6V. In contrast, the control results without the joule heating or pH swing only obtained a 0.23 g/m2/h and 0.32 g/m2/h flux, respectively. In addition, a physicochemical model was developed to assess the impacts of temperature on membrane surface pH. This system enhances resource recovery from waste streams and helps achieve a circular carbon economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.