Abstract
Abstract The persistence of trace organics in wastewater effluent is a major environmental concern. Possible use of fixed microbial films in wastewater treatment processes is currently an active area of research that may be able to address many of these problems. In the waste effluent, the persistence of trace organics is attributed, in part, to the inability of microbial populations to extract energy from dilute environments at a rate fast enough to sustain themselves. To address this problem, a novel wastewater treatment scheme is considered. On the basis of previous hollow fiber biomass growth studies, we believe that an anaerobic biofilm supported by hollow fibers could achieve greater biomass density than a film grown on traditional impermeable supports. This in turn could lead to improved substrate removal efficiency in a reactor of a given volume. Using this concept, we developed a mathematical model to test the potential of hollow fiber membrane reactors for biodegradation of acetate solution. A computer simulation has shown that it would be possible to remove about 90% from feed solutions containing 0.1 mg-cm-3 acetate with biomass density 25 mg-cm-3 in the hollow fiber supported biofilm. More concentrated feeds could be effectively treated if sufficiently high biomass density could be attained. This process, therefore, shows promise in wastewater treatment. The advantages of hollow fiber membrane bioreactors are their high surface-to-volume ratio, separation of cells from flow, and high cell concentration. All of these are essential requirements for optimum utilization of biomass in wastewater treatment. The hollow fiber membrane bioreactor concept, therefore, may provide a new and unique approach to treating organics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Air & Waste Management Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.