Abstract

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is linked to Parkinson's disease (PD) and memory and is selectively expressed in neurons at high levels. Its expression pattern suggests a function distinct from that of its widely expressed homolog UCH-L3. We report here that, in contrast to UCH-L3, UCH-L1 exists in a membrane-associated form (UCH-L1(M)) in addition to the commonly studied soluble form. C-terminal farnesylation promotes the association of UCH-L1 with cellular membranes, including the endoplasmic reticulum. The amount of UCH-L1(M) in transfected cells is shown to correlate with the intracellular level of alpha-synuclein, a protein whose accumulation is associated with neurotoxicity and the development of PD. Reduction of UCH-L1(M) in cell culture models of alpha-synuclein toxicity by treatment with a farnesyltransferase inhibitor (FTI-277) reduces alpha-synuclein levels and increases cell viability. Proteasome function is not affected by UCH-L1(M), suggesting that it may negatively regulate the lysosomal degradation of alpha-synuclein. Therefore, inhibition of UCH-L1 farnesylation may be a therapeutic strategy for slowing the progression of PD and related synucleinopathies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.