Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, but its pathogenesis remains elusive. A mutation in ubiquitin C-terminal hydrolase L1 (UCH-L1) is responsible for a form of genetic PD which strongly resembles the idiopathic PD. We previously showed that 1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline (3',4'DHBnTIQ) is an endogenous parkinsonism-inducing dopamine derivative. Here, we investigated the interaction between 3',4'DHBnTIQ and UCH-L1 and its possible role in the pathogenesis of idiopathic PD. Our results indicate that 3',4'DHBnTIQ binds to UCH-L1 specifically at Cys152 in vitro. In addition, 3',4'DHBnTIQ treatment increased the amount of UCH-L1 in the insoluble fraction of SH-SY5Y cells and inhibited its hydrolase activity to 60%, reducing the level of ubiquitin in the soluble fraction of SH-SY5Y cells. Catechol-modified UCH-L1 as well as insoluble UCH-L1 were detected in the midbrain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated PD model mice. Structurally as well as functionally altered UCH-L1 have been detected in the brains of patients with idiopathic PD. We suggest that conjugation of UCH-L1 by neurotoxic endogenous compounds such as 3',4'DHBnTIQ might play a key role in onset and progression of idiopathic PD. We investigated the interaction between ubiquitin C-terminal hydrolase L1 (UCH-L1) and the brain endogenous parkinsonism inducer 1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline (3',4'DHBnTIQ). Our results indicate that 3',4'DHBnTIQ binds to UCH-L1 specifically at cysteine 152 and induces its aggregation. 3',4'DHBnTIQ also inhibits the hydrolase activity of UCH-L1. Catechol-modified as well as insoluble UCH-L1 were detected in the midbrains of MPTP-treated Parkinson's disease (PD) model mice. Conjugation of UCH-L1 by neurotoxic endogenous compounds like 3',4'DHBnTIQ might play a key role in onset and progression of PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.