Abstract
AbstractThe occurrences and cycling of slab‐originated carbon and hydrogen are considered to be controlled by their reactions with metallic iron from mantle disproportionation and slab serpentinization, to form Fe alloys containing carbon and hydrogen. Here we show experimental results on the phase relations and melting of the Fe‐C‐H system using laser‐heated diamond anvil cell and X‐ray diffraction techniques up to 72 GPa. The incorporation of hydrogen was found to lower the eutectic melting temperatures of Fe‐C alloy by ∼50–178 K at 20–70 GPa, facilitating the formation of metallic liquids in the deep mantle and thus enhancing the mobility and deep cycling of subducted carbon and hydrogen. Hydrogen also substitutes with carbon in Fe‐C metal to form hydride and diamond at relatively high‐temperature conditions (e.g., 42.6 GPa, >1885 K and 71.8 GPa, >1798 K). The hydrogen‐carbon‐enriched metallic liquids provide the necessary fluid environment for superdeep diamond growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.