Abstract

The melting of Lennard-Jones (argon) clusters of various size (N = 500 to 10000 atoms), confined in a rigid matrix, is studied by molecular dynamics simulations. For spherical clusters we show the existence of a cluster size below which the dependence of the melting temperature cannot be described by the classical Gibbs-Thompson equation. We also provide evidence of the formation of a quasi-liquid layer at the surface of mesoscopic clusters. A good agreement is found between the theoretical model due to Celestini et al. and the simulation results obtained in this work. The melting of an ellipsoidal cluster is also investigated. We observe, in agreement with recent experimental and theoretical work, that the thickness of the molten layer is larger in the region of higher local curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.