Abstract

Purpose The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a porous stretching sheet. Since, the study of melting heat transfer has mesmerized the attention of scientists and engineers in the sense of its enormous uses in industrial processes, solidification, casting, and technology. Design/methodology/approach Bejan number and entropy are analyzed. Exploration of irreversibility is modeled using the thermodynamics second law. There is a discussion on thermophoresis and Brownian diffusion along with first-order chemical reactions. Adequate transformations are introduced to convert the controlling partial differential equations to ordinary differential equations. The three-phase Lobatto solvers (bvp5c) are used to obtain numerical solutions of the transmitted equations. Findings The effects of various factors on temperature, velocity, concentration, Bejan number and entropy rate are shown graphically. The velocity field is enhanced by increasing the melting heat parameter, and it declines for growing magnetic parameters. Temperature is decreased for increasing parametric values of melting heat, porous and Casson parameters. A 7% decrease in the Sherwood distribution is seen when we increase the Brownian motion parameter from 0.1 to 0.2. Similarly, an 11% decrement is found in the Nusselt distribution for increasing the Brinkman number from 0.5 to 1. Originality/value Entropy and Bejan number experience dual tendencies whenever the melting heat parameter increases. Nusselt number and skin friction experience the opposite behavior for the increasing values of melting parameter. Sherwood number decreases for the increasing values of melting parameter. The velocity profile is directly related to the melting parameter and inversely related to porous and magnetic parameters. Thermophoresis and Brinkman parameters boost the temperature profile and it is controlled by melting and porous parameters. Some notable fields where the present study is used inevitably are silicon wafering, geothermal energy recovery and semiconductor manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call