Abstract

Nanocrystalline silicon microwires are self-heated through single, large amplitude, and microsecond voltage pulses. Scanning electron micrographs show very smooth wire surfaces after the voltage pulse compared to as-fabricated nanocrystalline texture. Voltage-pulse induced self-heating leads to significant conductance improvement, suggesting crystallization of the wires. The minimum resistivity during the pulse is extracted from wires of different dimensions as 75.0±4.6 μΩ cm, matching previously reported values for liquid silicon. Hence, nanocrystalline silicon microwires melt through self-heating during the voltage pulse and resolidify upon termination of the pulse, resulting in very smooth and less-resistive crystalline structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call