Abstract

Crystal-liquid-glass, which combines the tunable properties of crystalline compounds with the processability of glasses, has emerged as a new class of materials for fabricating bulk-shapable devices in real applications. Inspired by the characteristics of deep eutectic solvent (DES) mixtures involving significant depressions in melting points compared to their neat constituent components, in this study, we designed and synthesized the first examples of meltable aluminum oxo clusters (AlOCs) via lattice doping with DESs at the molecular level. The abundant and strong hydrogen bonding between the aluminum molecular ring, DES components, and lattice solvents is postulated to be the root that affords melting point depressions and, thus, "melting" clusters. We prepared a transparent bubble-free glass film under autogenous pressure using a hot-press method. These cluster-based films exhibited luminescent and nonlinear optical properties similar to those of pristine crystalline compounds. Our study belongs to the interdisciplinary disciplines of chemistry and physics. It not only breaks the limitations of crystalline glass on metal and ligand types but also acts as a general guide for extending the range of meltable crystalline materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.