Abstract

There is an urgent and unmet requirement for biocompatible and biodegradable implants that gradually resorb when implanted in vivo. This study examines the potential of melt extruded thermoplastics polyethylene oxide (PEO) and polycaprolactone (PCL) in the area of regenerative medicine. Various ratios of PEO and PCL were melt blended and analysed in order to obtain an optimised breakdown rate. Subsequently the effect of varying the molecular weight of PCL using a constant molecular weight PEO was also examined. Samples were characterised using melt flow index (MFI), differential scanning calorimetry (DSC) and breakdown analysis. It was found that by altering both the concentrations of PEO/PCL and the molecular weight of PCL, melt viscosity, breakdown rate and thermal properties could be modulated to produce potential implant materials with a tailored breakdown rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call