Abstract

This study was performed in order to evaluate the possibility of obtaining spherical agglomerates with a high content of meltable binder by a melt agglomeration process in a high shear mixer. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 1500 or 6000 in a 10-l high shear mixer at an impeller speed of 400 rpm. The PEG 1500 was used as a size fraction of beads, and the PEG 6000 as a fine powder, a powder, unfractionated beads, and size fractions of beads. It was found to be possible to incorporate a high amount of PEG (28% m/m of the amount of lactose), because the rather low impeller speed applied in the present experiments caused less densification of the agglomerates. The fine powder of the PEG 6000 caused a complete adhesion of the mass to the bowl shortly after melting. A rapid agglomerate growth by coalescence was found to be the dominant growth mechanism when agglomeration was performed with the PEG 6000 powder. The PEG beads resulted in a slow and more controllable agglomerate growth, because the growth occurred primarily by an immersion of the lactose particles in the surface of the molten binder droplets. The initial shape of the agglomerates produced with the PEG beads was similar to the spherical shape of the beads. This shape could not be maintained during the process due to a breakage of the agglomerates caused by a hollow structure of the PEG beads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.